
LumiSpy
Release 0.2.2

The LumiSpy developers

Aug 08, 2023

USER GUIDE

1 Contents 3
1.1 Installation . 3
1.2 Introduction . 4
1.3 Non-uniform signal axes . 7
1.4 Signal tools . 9
1.5 Fitting luminescence data . 11
1.6 Utility functions . 12
1.7 LumiSpy metadata structure . 13
1.8 Bibliography . 18
1.9 lumispy . 18
1.10 Changelog . 34
1.11 Citing LumiSpy . 36
1.12 Contributing . 36
1.13 License . 38

Bibliography 39

Python Module Index 41

Index 43

i

ii

LumiSpy, Release 0.2.2

LumiSpy is a Python package extending the functionality for multi-dimensional data analysis provided by the Hy-
perSpy library. It is aimed at helping with the analysis of luminescence spectroscopy data (cathodoluminescence,
photoluminescence, electroluminescence, Raman, SNOM).

Check out the Installation section for further information, including how to start using this project.

Complementing this documentation, the LumiSpy Demos repository contains curated Jupyter notebooks to provide
tutorials and exemplary workflows.

Note: This project is under active development. Everyone is welcome to contribute. Please read our (see Contributing)
guidelines and get started!

USER GUIDE 1

https://dev.azure.com/Lumispy/lumispy/_build/latest?definitionId=3&branchName=main
https://github.com/lumispy/lumispy/actions
https://codecov.io/gh/lumispy/lumispy
https://github.com/LumiSpy/lumispy/security/code-scanning
https://pypi.python.org/pypi/lumispy
https://pypi.python.org/pypi/lumispy
https://anaconda.org/conda-forge/lumispy
https://www.gnu.org/licenses/gpl-3.0
https://doi.org/10.5281/zenodo.4640445
https://lumispy.readthedocs.io/en/latest/?badge=latest
https://hyperspy.org/
https://hyperspy.org/
https://github.com/LumiSpy/lumispy-demos

LumiSpy, Release 0.2.2

2 USER GUIDE

CHAPTER

ONE

CONTENTS

1.1 Installation

To install LumiSpy, you have the following options (independent of the operating system you use):

1. LumiSpy is included in the HyperSpy Bundle, a standalone program that includes a python distribution and all
relevant libraries (recommended if you do not use python for anything else).

2. Installation using conda (recommended if you are also working with other python packages).

3. Installation using pip.

4. Installing the development version from GitHub. Refer to the appropriate section in the HyperSpy user guide
(replacing hyperspy by lumispy).

1.1.1 Installation using conda

Follow these 3 steps to install LumiSpy using conda and start using it.

1. Creating a conda environment

LumiSpy requires Python 3 and conda – we suggest using the Python 3 version of Miniconda.

We recommend creating a new environment for the LumiSpy package (or installing it in the HyperSpy environment, if
you have one already). To create a new environment:

1. Load the anaconda prompt.

2. Run the following command:

(base) conda create -n lumispy -y

2. Installing the package in the new environment

Now activate the LumiSpy environment and install the package from conda-forge:

(base) conda activate lumispy
(lumispy) conda install -c conda-forge lumispy -y

Required dependencies will be installed automatically.

Installation is completed! To start using it, check the next section.

3

https://hyperspy.org/hyperspy-bundle/
https://github.com/LumiSpy/lumispy/
https://hyperspy.org/hyperspy-doc/current/user_guide/install.html#install-dev
https://conda.io/miniconda.html/
https://hyperspy.org/hyperspy-doc/current/user_guide/install.html#anaconda-install

LumiSpy, Release 0.2.2

Note: If you run into trouble, check the more detailed documentation in the HyperSpy user guide.

3. Getting Started

To get started using LumiSpy, especially if you are unfamiliar with Python, we recommend using Jupyter notebooks.
Having installed LumiSpy as above, a Jupyter notebook can be installed and opened using the following commands
entered into an anaconda prompt (from scratch):

(base) conda activate lumispy
(lumispy) conda install -c conda-forge jupyterlab -y
(lumispy) jupyter lab

Tutorials and exemplary workflows have been curated as a series of Jupyter notebooks that you can work through and
modify to perform many common analyses.

1.1.2 Installation using pip

Alternatively, you can also find LumiSpy in the Python Package Index (PyPI) and install it using (requires pip):

pip install lumispy

Required dependencies will be installed automatically.

1.1.3 Updating the package

Using conda:

conda update lumispy -c conda-forge

Using pip:

pip install lumispy --upgrade

Note: If you want to be notified about new releases, please Watch (Releases only) the Lumispy repository on GitHub
(requires a GitHub account).

1.2 Introduction

1.2.1 What is LumiSpy

LumiSpy is an open-source python library aimed at helping with the analysis of luminescence spectroscopy data –
the development started mainly with photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL)
and Raman spectroscopy in mind. Besides the standard continuous-excitation spectral data, the idea is to provide tools
also for the analysis of time-resolved (transient) measurements. However, it may prove useful also for other optical
measurements, such as absorption or transmission spectroscopy, scanning optical near field miscroscopy (SNOM), as
well as fourier-transform infrared spectroscopy (FTIR).

4 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/user_guide/install.html#anaconda-install
https://jupyter.org/
https://github.com/lumispy/lumispy-demos
pypi.org
https://github.com/LumiSpy/lumispy/

LumiSpy, Release 0.2.2

LumiSpy is an extension to the python package HyperSpy that facilitates hyperspectral data analysis, i.e. maps or
linescans where a spectrum is collected at each pixel. Or more general, multidimensional datasets that can be described
as multidimensional arrays of a given signal.

Notable features that HyperSpy provides are:

• base signal classes for the handling of (multidimensional) spectral data,

• the necessary tools for loading various data file formats,

• analytical tools that exploit the multidimensionality of datasets,

• a user-friendly and powerful framework for model fitting that provides many standard functions and can be easily
extended to custom ones,

• machine learning algorithms that can be useful, e.g. for denoising data,

• efficient handling of big datasets,

• functions for data visualization both to evaluate datasets during the analysis and provide interactive operation for
certain functions, as well as for plotting of data,

• extracting subsets of data from multidimensional datasets via regions of interest and a powerful numpy-style
indexing mechanism,

• handling of non-uniform data axes (introduced in the v1.7 release).

LumiSpy provides in particular:

• additional Signal types specifically for luminescence spectra and transients,

• transformation to non-uniform signal axes for use of other common units, such as eV (electron volt) and wavenum-
bers (Raman shift),

• additional signal tools such as data normalization and scaling,

• various utility functions useful in luminescence spectroscopy data analysis, such as joining multiple spectra along
the signal axis, unit conversion, etc.

LumiSpy should facilitate an easy and reproducible analysis of single spectra or spectral images.

1.2.2 Signal types

As an extension to HyperSpy, LumiSpy provides several signal types extending the base classes available in HyperSpy.
When the LumiSpy library is installed, these additional signal types are directly available to HyperSpy. To print all
available specialised hyperspy.signal.BaseSignal subclasses installed in your system call the hyperspy.utils.
print_known_signal_types() function:

>>> import hyperspy.api as hs
>>> hs.print_known_signal_types()

The different subclasses are characterized by the signal_type metadata attribute. Some additional properties are
summarized in the table below. Depending on the use case, certain functions will only be available for some signal
types (or inheriting) signal types.

1.2. Introduction 5

https://hyperspy.org
https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html
https://hyperspy.org/hyperspy-doc/current/user_guide/io.html#io
https://hyperspy.org/hyperspy-doc/current/user_guide/signal1d.html
https://hyperspy.org/hyperspy-doc/current/user_guide/model.html#model-label
https://hyperspy.org/hyperspy-doc/current/user_guide/mva.html#ml-label
https://hyperspy.org/hyperspy-doc/current/user_guide/big_data.html#big-data-label
https://hyperspy.org/hyperspy-doc/current/user_guide/visualisation.html#visualization-label
https://hyperspy.org/hyperspy-doc/current/user_guide/interactive_operations_ROIs.html#roi-label
https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html#signal-indexing
https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html#axes-types
https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html#signal-subclasses-table-label
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.utils.html#hyperspy.utils.print_known_signal_types
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.utils.html#hyperspy.utils.print_known_signal_types

LumiSpy, Release 0.2.2

Table 1: LumiSpy subclasses and their basic attributes.

BaseSignal sub-
class

sig-
nal_dimension

sig-
nal_type

dtype aliases

LumiSpectrum 1 Lumines-
cence

real LumiSpectrum, LuminescenceSpectrum

CLSpectrum 1 CL real CLSpectrum, cathodoluminescence
CLSEMSpectrum 1 CL_SEM real CLSEM, cathodoluminescence SEM
CLSTEMSpectrum 1 CL_STEM real CLSTEM, cathodoluminescence STEM
ELSpectrum 1 EL real ELSpectrum, electroluminescence
PLSpectrum 1 PL real PLSpectrum, photoluminescence
LumiTransient 1 Transient real TRLumi, TR luminescence, time-resolved luminescence
LumiTransientSpectrum2 Tran-

sientSpec
real TRLumiSpec, TR luminescence spectrum, time-

resolved luminescence spectrum

The hierarchy of the LumiSpy signal types and their inheritance from HyperSpy is summarized in the following dia-
gram:

hyperspy.signal.BaseSignal

hyperspy._signals.signal1d.Signal1D

LumiSpectrum

CLSpectrum

CLSEMSpectrum

CLSTEMSpectrum

ELSpectrum

PLSpectrum

LumiTransient

hyperspy.signal.Signal2D

LumiTransientSpectrum

1.2.3 Where are we heading?

LumiSpy is under active development, and as a user-driven project, we welcome contributions (see Contributing) to
the code and documentation, but also bug reports and feature requests from any other users. Don’t hesitate to join the
discussions!

Currrently, we have implemented the base functionality that extends HyperSpy’s capabilities to additional signal
classes. In the near future, the following functions should be developed:

• handling of transient (time-resolved) data,

• reading of common PL data formats,

• more dedicated analysis functionalities,

• . . .

6 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D
https://hyperspy.org/hyperspy-doc/current/index.html#user-guide-label

LumiSpy, Release 0.2.2

1.3 Non-uniform signal axes

LumiSpy facilitates the use of non-uniform axes, where the points of the axis vector are not uniformly spaced. This
situation occurs in particular when converting a wavelength scale to energy (eV) or wavenumbers (e.g. for Raman
shifts).

The conversion of the signal axis can be performed using the functions to_eV(), to_invcm() and
to_raman_shift() (alias for to_invcm_relative()). If the unit of the signal axis is set, the functions can handle
wavelengths in either nm or µm.

Accepted parameters are inplace=True/False (default is True), which determines whether the current signal object
is modified or a new one is created, and jacobian=True/False (default is True, see Jacobian transformation).

1.3.1 The energy axis

The transformation from wavelength 𝜆 to energy 𝐸 is defined as 𝐸 = ℎ𝑐/𝜆. Taking into account the refractive index
of air and doing a conversion from nm to eV, we get:

𝐸[𝑒𝑉] =
109

𝑒

ℎ𝑐

𝑛𝑎𝑖𝑟𝜆[𝑛𝑚]
,

where ℎ is the Planck constant, 𝑐 is the speed of light, 𝑒 is the elementary charge and 𝑛𝑎𝑖𝑟 is the refractive index of air,
see also [Pfueller].

>>> s2 = s.to_eV(inplace=False)
>>> s.to_eV()

Note: The refractive index of air 𝑛𝑎𝑖𝑟 is wavelength dependent. This dependence is taken into account by LumiSpy
based on the analytical formula given by [Peck] valid from 185-1700 nm (outside of this range, the values of the
refractive index at the edges of the range are used and a warning is raised).

1.3.2 The wavenumber axis/Raman shifts

The transformation from wavelength 𝜆 to wavenumber 𝜈 (spatial frequency of the wave) is defined as 𝜈 = 1/𝜆. The
wavenumber is usually given in units of cm−1.

When converting a signal to Raman shift, i.e. the shift in wavenumbers from the exciting laser wavelength, the
laser wavelength has to be passed to the function using the parameter laser using the same units as for the
original axis (e.g. 325 for nm or 0.325 for µm) unless it is contained in the LumiSpy metadata structure under
Acquisition_instrument.Laser.wavelength.

TODO: Automatically read laser wavelength from metadata if given there.

>>> s2 = s.to_invcm(inplace=False)
>>> s.to_invcm()
>>> s2 = s.to_raman_shift(inplace=False, laser=325)
>>> s.to_raman_shift(laser=325)

1.3. Non-uniform signal axes 7

https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html#non-uniform-data-axis

LumiSpy, Release 0.2.2

1.3.3 Jacobian transformation

When transforming the signal axis, the signal intensity is automatically rescaled (Jacobian transformation), unless the
jacobian=False option is given. Only converting the signal axis, and leaving the signal intensity unchanged, implies
that the integral of the signal over the same interval would lead to different results depending on the quantity on the
axis (see e.g. [Mooney] and [Wang]).

For the energy axis as example, if we require 𝐼(𝐸)𝑑𝐸 = 𝐼(𝜆)𝑑𝜆, then 𝐸 = ℎ𝑐/𝜆 implies

𝐼(𝐸) = 𝐼(𝜆)
𝑑𝜆

𝑑𝐸
= 𝐼(𝜆)

𝑑

𝑑𝐸

ℎ𝑐

𝐸
= −𝐼(𝜆)

ℎ𝑐

𝐸2

The minus sign just reflects the different directions of integration in the wavelength and energy domains. The same
argument holds for the conversion from wavelength to wavenumber (just without the additional prefactors in the equa-
tion). The renormalization in LumiSpy is defined such that the intensity is converted from counts/nm (or counts/µm)
to counts/meV. The following figure illustrates the effect of the Jacobian transformation:

Transformation of the variance

Scaling the signal intensities implies that also the stored variance of the signal needs to be scaled accordingly. Ac-
cording to 𝑉 𝑎𝑟(𝑎𝑋) = 𝑎2𝑉 𝑎𝑟(𝑋), the variance has to be multiplied with the square of the Jacobian. This squared
renormalization is automatically performed by LumiSpy if jacobian=True. In particular, homoscedastic (constant)
noise will consequently become heteroscedastic (changing as a function of the signal axis vector). Therefore, if the
metadata.Signal.Noise_properties.variance attribute is a constant, it is converted into a hyperspy.signal.
BaseSignal object before the transformation.

See Signal variance (noise) for more general information on data variance in the context of model fitting and the
HyperSpy documentation on setting the noise properties.

Note: If the Jacobian transformation is performed, the values of metadata.Signal.Noise_properties.
Variance_linear_model are reset to their default values (gain_factor=1, gain_offset=0 and
correlation_factor=1). Should these values deviate from the defaults, make sure to run hyperspy.signal.
BaseSignal.estimate_poissonian_noise_variance() prior to the transformation.

8 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal
https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html?highlight=variance_linear_model#setting-the-noise-properties
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance

LumiSpy, Release 0.2.2

1.4 Signal tools

This section summarizes functions operating on the signal data. Besides those implemented in LumiSpy, it highlights
functions from HyperSpy that are particularly useful for luminescence spectroscopy data.

1.4.1 Scaling and normalizing signal data

For comparative plotting or a detailed analysis, the intensity of spectra may need to be either scaled by the respec-
tive integration times or normalized. The luminescence signal classes provide these functionalities in the methods
scale_by_exposure() and normalize().

Both functions can operate directly on the signal (inplace=True), but as default a new signal is returned.

The scaling function can use the integration_time (unit: seconds) provided in the LumiSpy metadata structure
(metadata.Acqusition_instrument.Detector.integration_time). Otherwise, the appropriate parameter has
to be passed to the function.

>>> scaled = s.scale_by_exposure(integration_time=0.5, inplace=True)

Normalization is performed for the pixel with maximum intensity, Alternatively, the parameter pos in calibrated
units of the signal axis can be given to normalize the intensity at this position. Normalization may be convenient
for plotting, but should usually not be performed on signals used as input for further analysis (therefore the default is
inplace=False).

>>> s.normalize(pos=450)

1.4.2 Peak positions and properties

Peak identification

HyperSpy provides functions to find the positions of maxima or minima in a dataset:

• indexmax() - return the index of the maximum value along a given axis.

• indexmin() - return the index of the minimum value along a given axis.

• valuemax() - return the position/coordinates of the maximum value along a given axis in calibrated units.

• valuemin() - return the position/coordinates of the minimum value along a given axis in calibrated units.

These functions take the axis keyword to define along which axis to perform the operation and return a new signal
containing the result.

A much more powerful method to identify peaks is using the peak finding routine based on the downward zero-
crossings of the first derivative of a signal: find_peaks1D_ohaver(). This function can find multiple peaks in a
dataset and has a number of parameters for fine-tuning the sensitivity, etc.

All of these functions can be performed for a subset of the dataset:

>>> peaks = s.find_peaks1D_ohaver()
>>> peaks = s.isig[100:-100].find_peaks1D_ohaver()

1.4. Signal tools 9

https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.indexmax
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.indexmin
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.valuemax
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.valuemin
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D.find_peaks1D_ohaver

LumiSpy, Release 0.2.2

Peak Width

For asymmetric peaks, fitted functions may not provide an accurate description of the peak, in particular the peak width.
The function estimate_peak_width() determines the width of a peak at a certain fraction of its maximum value.
The default value factor=0.5 returns the full width at half maximum (FWHM).

>>> s.remove_background()
>>> width = s.estimate_peak_width(factor=0.3)

Calculating the centroid of a spectrum (centre of mass)

The function centroid() (based on the utility function com()) is an alternative to finding the position of the maximum
intensity of a peak, useful in particular for non-symmetric peaks with pronounced shoulders. It finds the centroid (center
of mass) of a peak in the spectrum from the signal axis units (or pixel number) and the intensity at each pixel value. It
basically represents a “weighted average” of the peak as such:

𝑐𝑜𝑚 =

∑︀
𝑥𝑖𝐼𝑖∑︀
𝐼𝑖

,

where 𝑥𝑖 is the wavelength (or pixel number) at which the intensity of the spectrum 𝐼𝑖 is measured.

This function also works for non-linear axes. For the hyperspy.axes.FunctionalDataAxis, the centroid is extrap-
olated based on the function used to create the non-uniform axis. For hyperspy.axes.DataAxis, a linear interpola-
tion between the axes points at the center of mass is assumed, but this behaviour can be changed with the kwargs of
scipy.interpolate.interp1d function.

>>> s = lum.signals.LumiSpectrum([[[1, 2, 3, 2, 1, 0]]*2]*3)
>>> s
<LumiSpectrum, title: , dimensions: (2, 3|6)>

>>> ax = s.axes_manager.signal_axes[0]
>>> ax.offset = 200
>>> ax.scale = 100

>>> com = s.centroid()
>>> com
<Signal2D, title: Centroid map, dimensions: (|2, 3)>
>>> com.data[0,0]
400.0

Note: This function only works for a single peak. If you have multiple peaks, slice the signal beforehand or use the
slice parameter (which follows the s.isig[:] convention).

Note: The Jacobian transformation may affect the shape, in particular of broader peaks. It is therefore highly rec-
ommended to convert luminescence spectra from wavelength to the energy axis prior to determining the centroid to
determine the true emission energy. See e.g. [Wang] and [Mooney].

10 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D.estimate_peak_width
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.axes.html#hyperspy.axes.FunctionalDataAxis
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.axes.html#hyperspy.axes.DataAxis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

LumiSpy, Release 0.2.2

1.4.3 Signal statistics and analytical operations

Standard statistical operations can be performed on the data or a subset of the data, notably these include max(),
min(), sum(), mean(), std(), and var(). Variations of all these functions exist that ignore missing values (NaN) if
present, e.g. nanmax().

Integration along a specified signal axis is performed using the function integrate1D().

The numerical derivative of a signal can be calculated using the function derivative(), while the n-th order discrete
difference can be calculated using diff().

These functions take the axis keyword to define along which axis to perform the operation and return a new signal
containing the result:

>>> area = s.integrate1D(axis=0)

1.4.4 Replacing negative data values

Log-scale plotting fails in the presence of negative values in the dataset (e.g. introduced after background removal).
In this case, the utility function remove_negative() replaces all negative values in the data array by a basevalue
(default basevalue=1). The default operational mode is inplace=False (a new signal object is returned).

>>> s.remove_negative(0.1)

1.5 Fitting luminescence data

LumiSpy is compatible with HyperSpy model fitting. It can fit using both uniform and and non-uniform axes (e.g.
energy scale). A general introduction can be found in the HyperSpy user guide.

A detailed example is given in the Fitting_tutorial in the HyperSpy demos repository. See also the LumiSpy
demo notebooks for examples of data fitting.

Note: The Jacobian transformation may affect the shape, in particular of broader peaks. It is therefore highly rec-
ommended to convert luminescence spectra from wavelength to the energy axis prior to any fitting to obtain the true
emission energy. See e.g. [Wang] and [Mooney].

TODO: Show how to extract the modeled signal with all/one component.

1.5.1 Signal variance (noise)

TODO: Documentation on variance handling in the context of fitting, in particular using
estimate_poissonian_noise_variance()

For a detailed discussion, see [Tappy]

1.5. Fitting luminescence data 11

https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.max
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.min
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.sum
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.mean
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.std
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.var
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.nanmax
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.integrate1D
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.derivative
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.diff
https://hyperspy.org/hyperspy-doc/current/user_guide/model.html
https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html#axes-types
https://hyperspy.org/hyperspy-doc/current/user_guide/model.html
https://github.com/hyperspy/hyperspy-demos
https://github.com/LumiSpy/lumispy-demos
https://github.com/LumiSpy/lumispy-demos
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance

LumiSpy, Release 0.2.2

1.6 Utility functions

This section summarizes various useful functions implemented in LumiSpy.

1.6.1 Join spectra

In case several spectra (or spectral images) where subsequently recorded for different, but overlapping spectral windows,
LumiSpy provides a utility join_spectra() to merge these into a single spectrum. The main argument is a list of two
or more spectral objects. Spectra are joined at the centre of the overlapping range along the signal axis. To avoid steps
in the intensity, several parameters (see docstring: join_spectra()) allow to tune the scaling of the later signals with
respect to the previous ones. By default, the scaling parameter is determined as average ratio between the two signals
in the range of +/- 50 pixels around the centre of the overlapping region.

>>> import lumispy as lum
>>> s = lum.join_spectra((s1,s2))

1.6.2 Utilities for spectral maps

The function crop_edges() removes the specified number of pixels from all four edges of a spectral map. It is a
convenience wrapper for the inav method in HyperSpy.

>>> s.crop_edges(crop_px=2)

[TODO: add possibility to crop different amounts of pixels on different sides]

1.6.3 Unit conversion

For convenience, LumiSpy provides functions that convert between different units commonly used for the signal axis.
Namely,

• nm2eV()

• eV2nm()

• nm2invcm()

• invcm2nm()

For the energy axis, the conversion uses the wavelength-dependent refractive index of air.

1.6.4 Solving the grating equation

The function solve_grating_equation() follows the conventions described in the tutorial from Horiba Scientific.

12 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html#signal-indexing
https://horiba.com/uk/scientific/products/optics-tutorial/wavelength-pixel-position

LumiSpy, Release 0.2.2

1.7 LumiSpy metadata structure

LumiSpy extends the HyperSpy metadata structure with conventions for metadata specific to its signal types. Refer to
the HyperSpy metadata documentation for general metadata fields.

The metadata of any signal objects is stored in the metadata attribute, which has a tree structure. By convention,
the node labels are capitalized and the ones for leaves are not capitalized. When a leaf contains a quantity that is not
dimensionless, the units can be given in an extra leaf with the same label followed by the _units suffix.

Besides directly accessing the metadata tree structure, e.g. s.metadata.Signal.signal_type, the HyperSpy meth-
ods set_item(), has_item() and get_item() can be used to add to, search for and read from items in the metadata
tree, respectively.

The luminescence specific metadata structure is represented in the following tree diagram. The default units are given
in parentheses. Details about the leaves can be found in the following sections of this chapter. Note that not all types of
leaves will apply to every type of measurement. For example, while parallel acquisition with a CCD is characterized
by the central_wavelength, a serial acquisition with a PMT will require a start_wavelength and a step_size.

metadata
General

see HyperSpy
Sample

see HyperSpy
Signal

signal_type
quantity
otherwise see HyperSpy

Acquisition_instrument
Laser / SEM / TEM

laser_type
model
wavelength (nm)
power (mW)
objective_magnification
Filter

filter_type
position
optical_density
cut_on_wavelength (nm)
cut_off_wavelength (nm)

for SEM/TEM see HyperSpy
Spectrometer

model
acquisition_mode
entrance_slit_width (mm)
exit_slit_width (mm)
central_wavelength (nm)
start_wavelength (nm)
step_size (nm)
Grating

groove_density (grooves/mm)
blazing_angle (º)
blazing_wavelength (nm)

Filter
(continues on next page)

1.7. LumiSpy metadata structure 13

https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#metadata-structure
https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.set_item
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.has_item
https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.get_item

LumiSpy, Release 0.2.2

(continued from previous page)

filter_type
position
optical_density
cut_on_wavelength (nm)
cut_off_wavelength (nm)

Detector
detector_type
model
frames
integration_time (s)
saturation_fraction
binning
processing
sensor_roi
pixel_size (µm)

Spectral_image
mode
drift_correction_periodicity
drift_correction_units (s)

1.7.1 General

See HyperSpy-Metadata-General.

1.7.2 Sample

See HyperSpy-Metadata-Sample.

1.7.3 Signal

signal_type
type: string

String that describes the type of signal. The LumiSpy specific signal classes are summarized under Signal types.

quantity
type: string

The name of the quantity of the “intensity axis” with the units in round brackets if required, for example ‘Intensity
(counts/s)’.

See HyperSpy-Metadata-Signal for additional fields.

14 Chapter 1. Contents

https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#general
https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sample
https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sample

LumiSpy, Release 0.2.2

1.7.4 Acquisition Instrument

1.7.5 Laser / SEM / TEM

For SEM or TEM see HyperSpy-Metadata-SEM or HyperSpy-Metadata-TEM.

Laser

laser_type
type: string

The type of laser used, e.g. ‘HeCd’.

model
type: string

Model of the laser (branding by manufacturer).

wavelength
type: float

Emission wavelength of the exciting laser in nm.

power
type: float

Measured power of the excitation laser in mW.

magnification
type: int

Magnification of the microscope objective used to focus the beam to the sample.

Filter

Information about additional filters entered into the lightpath before the sample. In case multiple filters are used, they
should be numbered Filter_1, etc.

filter_type
type: string

Type of filter (e.g. ‘optical density’, ‘short pass’, ‘long pass’, ‘bandpass’, ‘color’).

position
type: string

Position in the beam (e.g. ‘excitation’ vs. ‘detection’ in case of optical excitation).

optical_density
type: float

Optical density in case of an intensity filter.

cut_on_wavelength
type: float

Cut on wavelength in nm in case of a long-pass or bandpass filter.

cut_off_wavelength
type: float

Cut off wavelength in nm in case of a short-pass or bandpass filter.

1.7. LumiSpy metadata structure 15

https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sem
https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#tem

LumiSpy, Release 0.2.2

1.7.6 Spectrometer

Contains information about the spectrometer, configuration and grating used for the measurement. In case multiple
spectrometers are connected in series, they should be numbered Spectrometer_1, etc.

model
type: string

Model of the spectrometer (branding by manufacturer).

acquisition_mode
type: string

Acquisition mode (e.g. ‘Parallel dispersive’, versus ‘Serial dispersive’).

entrance_slit_width
type: float

Width of the entrance slit in mm.

exit_slit_width
type: float

Width of the exit slit (serial acquisition) in mm.

central_wavelength
type: float

Central wavelength during acquisition (parallel acquisition).

start_wavelength
type: float

Start wavelength in nm (serial acquisition).

step_size
type: float

Step size in nm (serial acquisition).

Grating

Information of the dispersion grating employed in the measurement.

groove_density
type: int

Density of lines on the grating in grooves/mm.

blazing_angle
type: int

Angle in degree (º) that the grating is blazed at.

blazing_wavelength
type: int

Wavelength that the grating blaze is optimized for in nm.

16 Chapter 1. Contents

LumiSpy, Release 0.2.2

Filter

Information about additional filters entered into the lightpath after the sample. In case multiple filters are used, they
should be numbered Filter_1, etc. See Filter above for details on items that may potentially be included.

1.7.7 Detector

Contains information about the detector used to acquire the signal. Contained leaves will differ depending on the type
of detector.

detector_type
type: string

The type of detector used to acquire the signal (CCD, PMT, StreakCamera, TCSPD).

model
type: string

The model of the used detector.

frames
type: int

Number of frames that are summed to yield the total integration time.

integration_time (s)
type: float

Time over which the signal is integrated. In case multiple frames are summed, it is the total exposure time. In
case of serial acquisition, it is the dwell time per data point.

saturation_fraction
type: float

Fraction of the signal intensity compared with the saturation threshold of the CCD.

binning
type: tuple of int

A tuple that describes the binning of a parallel detector such a CCD on readout in x and y directions.

processing
type: string

Information about automatic processing performed on the data, e.g. ‘dark subtracted’.

sensor_roi
type: tuple of int

Tuple of length 2 or 4 that specifies range of pixels on a detector that are read out: (offset x, offset y, size x, size
y) for a 2D array detector and (offset, size) for a 1D line detector.

pixel_size
type: float or tuple of float

Size of a pixel in µm. Tuple of length 2 (width, height), when the pixel is not square.

1.7. LumiSpy metadata structure 17

LumiSpy, Release 0.2.2

1.7.8 Spectral_image

Contains information about mapping parameters, such as step size, drift correction, etc.

mode
type: string

Mode of the spectrum image acquisition such as ‘Map’ or ‘Linescan’.

drift_correction_periodicity
type: int/float

Periodicity of the drift correction in specified units (standard s).

drift_correction_units
type: string

Units of the drift correction such as ‘s’, ‘px’, ‘rows’.

1.8 Bibliography

1.9 lumispy

1.9.1 lumispy package

Subpackages

lumispy.signals package

Submodules

lumispy.signals.cl_spectrum module

Signal class for cathodoluminescence spectral data

class lumispy.signals.cl_spectrum.CLSEMSpectrum(*args, **kwargs)
Bases: CLSpectrum

1D scanning electron microscopy cathodoluminescence signal class.

correct_grating_shift(cal_factor_x_axis, corr_factor_grating, sem_magnification, **kwargs)
Applies shift caused by the grating offset wrt the scanning centre. Authorship: Gunnar Kusch
(gk419@cam.ac.uk)

Parameters

• cal_factor_x_axis – The navigation correction factor.

• corr_factor_grating – The grating correction factor.

• sem_magnification – The SEM (real) magnification value. For the Attolight original
metadata, take the SEM.Real_Magnification value

• kwargs – The parameters passed to hyperspy.align1D() function like: interpola-
tion_method (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic, ‘cubic’) parallel: Bool crop,
expand, fill_value . . .

18 Chapter 1. Contents

mailto:gk419@cam.ac.uk

LumiSpy, Release 0.2.2

class lumispy.signals.cl_spectrum.CLSTEMSpectrum(*args, **kwargs)
Bases: CLSpectrum

1D scanning transmission electron microscopy cathodoluminescence signal class.

class lumispy.signals.cl_spectrum.CLSpectrum(*args, **kwargs)
Bases: LumiSpectrum

General 1D cathodoluminescence signal class.

_make_signal_mask(luminescence_roi)
Creates a mask from the peak position and peak widths of the luminescence spectrum.

Parameters
luminescence_roi (array) – In the form of an array of pairwise elements [[peak1_x,
peak1_width], [peak2_x, peak2_width],. . .].

Returns
A signal_mask.

Return type
array

remove_spikes(threshold='auto', show_diagnosis_histogram=False, inplace=False,
luminescence_roi=None, signal_mask=None, add_noise=False, navigation_mask=None,
interactive=False, **kwargs)

HyperSpy-based spike removal tool adapted to LumiSpy to run non-interactively and without noise addi-
tion by default. Graphical interface to remove spikes from EELS spectra or luminescence data. If non-
interactive, it removes all spikes and returns a ~hyperspy.signals._signal_tools.SpikesRemoval object.

Parameters

• signal_mask (bool array) – Restricts the operation to the signal locations not marked
as True (masked).

• navigation_mask (bool array) – Restricts the operation to the navigation locations not
marked as True (masked).

• threshold ('auto' or int) – if int set the threshold value use for the detecting the spikes.
If auto, determine the threshold value as being the first zero value in the histogram obtained
from the spikes_diagnosis() method.

• interactive (bool) – If True, remove the spikes using the graphical user interface. If
False, remove all the spikes automatically, which can introduce artefacts if used with signal
containing peak-like features. However, this can be mitigated by using the signal_mask
argument to mask the signal of interest.

• display (bool) – If True, display the user interface widgets. If False, return the widgets
container in a dictionary, usually for customisation or testing.

• toolkit (str, iterable of strings or None) – If None (default), all available
widgets are displayed or returned. If string, only the widgets of the selected toolkit are
displayed if available. If an interable of toolkit strings, the widgets of all listed toolkits are
displayed or returned.

• **kwargs (dict) –

Keyword arguments pass to
SpikesRemoval()

See also:

spikes_diagnosis()

1.9. lumispy 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

LumiSpy, Release 0.2.2

Parameters

• show_diagnosis_histogram (bool) – Plot or not the derivative histogram to show the
magnitude of the spikes present.

• inplace (bool) – If False, a new signal object is created and returned. If True, the original
signal object is modified.

• luminescence_roi (array) – The peak position and peak widths of the peaks in the lumi-
nescence spectrum. In the form of an array of pairwise elements [[peak1_x, peak1_width],
[peak2_x, peak2_width],. . .] in the units of the signal axis. It creates a signal_mask pro-
tecting the peak regions. To be used instead of signal_mask.

Returns
Depends on inplace, returns or overwrites the CLSpectrum after spike removal.

Return type
None or CLSpectrum

class lumispy.signals.cl_spectrum.LazyCLSEMSpectrum(*args, **kwargs)
Bases: LazySignal, CLSEMSpectrum

Lazy 1D scanning electron microscopy cathodoluminescence signal class.

class lumispy.signals.cl_spectrum.LazyCLSTEMSpectrum(*args, **kwargs)
Bases: LazySignal, CLSTEMSpectrum

Lazy 1D scanning transmission electron microscopy cathodoluminescence signal class.

class lumispy.signals.cl_spectrum.LazyCLSpectrum(*args, **kwargs)
Bases: LazySignal, CLSpectrum

General lazy 1D cathodoluminescence signal class.

lumispy.signals.common_luminescence module

Signal class for luminescence data (BaseSignal class)

class lumispy.signals.common_luminescence.CommonLumi

Bases: object

General luminescence signal class (dimensionless)

crop_edges(crop_px)
Crop the amount of pixels from the four edges of the scanning region, from out the edges inwards.

Parameters
crop_px (int) – Amount of pixels to be cropped on each side individually.

Returns
signal_cropped – A smaller cropped CL signal object. If inplace is True, the original object
is modified and no LumiSpectrum is returned.

Return type
CommonLuminescence

20 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

LumiSpy, Release 0.2.2

normalize(pos=nan, element_wise=False, inplace=False)
Normalizes data to value at pos along signal axis, defaults to maximum value.

Can be helpful for e.g. plotting, but does not make sense to use on signals that will be used as input for
further calculations!

Parameters

• pos (float, int) – If ‘nan’ (default), spectra are normalized to the maximum. If float,
position along signal axis in calibrated units at which to normalize the spectra. If int, index
along signal axis at which to normalize the spectra.

• element_wise (boolean) – If False (default), a spectrum image is normalized by a com-
mon factor. If True, each spectrum is normalized individually.

• inplace (boolean) – If False (default), a new signal object is created and returned. If
True, the operation is performed on the existing signal object.

Notes

Sets metadata.Signal.normalized to True. If metadata.Signal.quantity contains the word ‘Intensity’, re-
places this field with ‘Normalized intensity’.

remove_negative(basevalue=1, inplace=False)
Sets all negative values to ‘basevalue’, e.g. for logarithmic scale plots.

Parameters

• basevalue (float) – Value by which negative values are replaced (default = 1).

• inplace (boolean) – If False (default), a new signal object is created and returned. Oth-
erwise, the operation is performed on the existing signal object.

Notes

Sets metadata.Signal.negative_removed to True.

scale_by_exposure(integration_time=None, inplace=False, **kwargs)
Scale data in spectrum by integration time / exposure, (e.g. convert counts to counts/s).

Parameters

• integration_time (float) – Integration time (exposure) in s. If not given, the func-
tion tries to use the ‘metadata.Acqusition_instrument.Detector.integration_time’ field or
alternatively find any ‘integration_time’, ‘exposure’ or ‘dwell_time’ fields in the origi-
nal_metadata.

• inplace (boolean) – If False (default), a new signal object is created and returned. If
True, the operation is performed on the existing signal object.

1.9. lumispy 21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

LumiSpy, Release 0.2.2

Notes

Sets metadata.Signal.scaled to True. If intensity units is ‘counts’, replaces them by ‘counts/s’.

Deprecated since version 0.2: The exposure argument was renamed integration_time, and it will be removed
in LumiSpy 1.0.

lumispy.signals.common_transient module

Signal class for transient data (BaseSignal class)

class lumispy.signals.common_transient.CommonTransient

Bases: object

General transient signal class (dimensionless)

lumispy.signals.el_spectrum module

Signal class for electroluminescence spectral data

class lumispy.signals.el_spectrum.ELSpectrum(*args, **kwargs)
Bases: LumiSpectrum

General 1D electroluminescence signal class

class lumispy.signals.el_spectrum.LazyELSpectrum(*args, **kwargs)
Bases: LazySignal, ELSpectrum

General lazy 1D electroluminescence signal class

lumispy.signals.luminescence_spectrum module

Signal class for Luminescence spectral data (1D).

class lumispy.signals.luminescence_spectrum.LazyLumiSpectrum(*args, **kwargs)
Bases: LazySignal, LumiSpectrum

General lazy 1D luminescence signal class.

class lumispy.signals.luminescence_spectrum.LumiSpectrum(*args, **kwargs)
Bases: Signal1D, CommonLumi

General 1D luminescence signal class.

_convert_data(newaxis, factor, inplace, jacobian, data2, var2)
Utility function to perform the data and variance conversion for signal unit transformations.

_reset_variance_linear_model()

Resets the variance linear model parameters to their default values, as they are not applicable any longer
after a Jacobian transformation.

centroid(signal_range=None, **kwargs)
Finds the centroid (center of mass) of a peak in the spectrum from the wavelength (or pixel number) and
the intensity at each pixel value. It basically represents a “weighted average” of the peak.

22 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D

LumiSpy, Release 0.2.2

Notes

This function only works for a single peak. If you have multiple peaks, slice the signal beforehand or use
the signal_range parameter.

TODO: Implement this function for multiple peaks (with the npeaks parameter) by finding the top 2 peaks
from mean spectrum and then returning a signal with 2 com.

Parameters

• signal_range (tuple of ints or floats, optional) – A tuple representing the
indices of the signal axis (start index, end index) where the peak is located. If the tuple
contains int, it slices on index. If the tuple contains float, it slices on signal units (default
HyperSpy s.inav[:] functionality).

• kwargs (dictionary) – For the scipy.interpolate.interp1d function.

Returns
signal – Signal object containing the center of mass for every pixel. Depending on the di-
mensionality the type is Signal2D or a BaseSignal (for single spectrum).

Return type
Signal2D, BaseSignal

px_to_nm_grating_solver(gamma_deg, deviation_angle_deg, focal_length_mm, ccd_width_mm,
grating_central_wavelength_nm, grating_density_gr_mm, inplace=False)

Converts signal axis of 1D signal (in pixels) to wavelength, solving the grating equation. See lu-
mispy.axes.solve_grating_equation for more details.

Parameters

• gamma_deg (float) – Inclination angle between the focal plane and the centre of the grat-
ing (found experimentally from calibration). In degree.

• deviation_angle_deg (float) – Also known as included angle. It is defined as the dif-
ference between angle of diffraction (𝛽) and angle of incidence (𝛼). Given by manufacturer
specsheet. In degree.

• focal_length_mm (float) – Given by manufacturer specsheet. In mm.

• ccd_width_mm (float) – The width of the CDD. Given by manufacturer specsheet. In
mm.

• grating_central_wavelength_nm (float) – Wavelength at the centre of the grating,
where exit slit is placed. In nm.

• grating_density_gr_mm (int) – Grating density in gratings per mm.

• inplace (bool) – If False, it returns a new object with the transformation. If True, the
original object is transformed, returning no object.

Returns
signal – A signal with calibrated wavelength units.

Return type
LumiSpectrum

1.9. lumispy 23

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

LumiSpy, Release 0.2.2

Examples

>>> s = LumiSpectrum(np.ones(20),))
>>> s.px_to_nm_grating_solver(*params, inplace=True)
>>> s.axes_manager.signal_axes[0].units == 'nm'

remove_background_from_file(background=None, inplace=False, **kwargs)
Subtract the background to the signal in all navigation axes. If no background file is passed as argument,
the remove_background() from HyperSpy is called with the GUI.

Parameters

• background (array shape (2, n) or Signal1D) – An array containing the back-
ground x-axis and the intensity values [[xs],[ys]] or a Signal1D object. If the x-axis values
do not match the signal_axes, then interpolation is done before subtraction. If only the
intensity values are provided, [ys], the functions assumes no interpolation needed.

• inplace (boolean) – If False, it returns a new object with the transformation. If True,
the original object is transformed, returning no object.

Returns
signal – A background subtracted signal.

Return type
LumiSpectrum

Notes

This function does not work with non-uniform axes.

savetxt(filename, fmt='%.5f', delimiter='\t', axes=True, transpose=False, **kwargs)
Writes luminescence spectrum object to simple text file.

Writes single spectra to a two-column data file with signal axis as X and data as Y. Writes linescan data to
file with signal axis as first row and navigation axis as first column (flipped if transpose=True).

Parameters

• filename (string) –

• fmt (str or sequence of strs, optional) – A single or sequence of format
strings. Default is ‘%.5f’.

• delimiter (str, optional) – String or character separating columns. Default is ‘,’

• axes (bool, optional) – If True (default), include axes in saved file. If False, save the
data array only.

• transpose (bool, optional) – If True, transpose data array and exchange axes. Default
is false. Ignored for single spectra.

• **kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline header, footer,
comments, or encoding.

See also:

numpy.savetxt

24 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt

LumiSpy, Release 0.2.2

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> S.savetxt('spectrum.txt')
0.00000 0.00000
1.00000 1.00000
2.00000 2.00000
3.00000 3.00000
4.00000 4.00000
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> L.savetxt('linescan.txt')
0.00000 0.00000 1.00000 2.00000 3.00000 4.00000
0.00000 0.00000 5.00000 10.00000 15.00000 20.00000
1.00000 1.00000 6.00000 11.00000 16.00000 21.00000
2.00000 2.00000 7.00000 12.00000 17.00000 22.00000
3.00000 3.00000 8.00000 13.00000 18.00000 23.00000
4.00000 4.00000 9.00000 14.00000 19.00000 24.00000

to_array(axes=True, transpose=False)

Returns luminescence spectrum object as numpy array (optionally
including the axes).

Returns single spectra as two-column array. Returns linescan data as array with signal axis as first row and
navigation axis as first column (flipped if transpose=True).

Parameters

• axes (bool, optional) – If True (default), include axes in array. If False, return the data
array only.

• transpose (bool, optional) – If True, transpose data array and exchange axes. Default
is false. Ignored for single spectra.

• **kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline header, footer,
comments, or encoding.

Notes

The output of this function can be used to convert a signal object to a pandas dataframe, e.g. using df =
pd.Dataframe(S.to_array()).

1.9. lumispy 25

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

LumiSpy, Release 0.2.2

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> S.to_array()
array([[0., 0.],

[1., 1.],
[2., 2.],
[3., 3.],
[4., 4.]])

...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> L.to_array()
array([[0., 0., 1., 2., 3., 4.],

[0., 0., 1., 2., 3., 4.],
[1., 5., 6., 7., 8., 9.],
[2., 10., 11., 12., 13., 14.],
[3., 15., 16., 17., 18., 19.],
[4., 20., 21., 22., 23., 24.]])

to_eV(inplace=True, jacobian=True)
Converts signal axis of 1D signal to non-linear energy axis (eV) using wavelength dependent refractive
index of air. Assumes wavelength in units of nm unless the axis units are specifically set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/meV by doing a Jacobian transformation,
see e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the energy domain. If the variance of the signal is known,
i.e. metadata.Signal.Noise_properties.variance is a signal representing the variance, a squared renormal-
ization of the variance is performed. Note that if the variance is a number (not a signal instance), it is
converted to a signal if the Jacobian transformation is performed

Parameters

• inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

• jacobian (boolean) – The default is to do the Jacobian transformation (recommended
at least for luminescence signals), but the transformation can be suppressed by setting this
option to False.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_eV()

to_invcm(inplace=True, jacobian=True)
Converts signal axis of 1D signal to non-linear wavenumber axis (cm^-1). Assumes wavelength in units of
nm unless the axis units are specifically set to µm.

26 Chapter 1. Contents

LumiSpy, Release 0.2.2

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1 by doing a Jacobian transformation,
see e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber domain. If the variance of the signal
is known, i.e. metadata.Signal.Noise_properties.variance is a signal representing the variance, a squared
renormalization of the variance is performed. Note that if the variance is a number (not a signal instance),
it is converted to a signal if the Jacobian transformation is performed

Parameters

• inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

• jacobian (boolean) – The default is to do the Jacobian transformation (recommended
at least for luminescence signals), but the transformation can be suppressed by setting this
option to False.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm()

to_invcm_relative(laser=None, inplace=True, jacobian=False)
Converts signal axis of 1D signal to non-linear wavenumber axis (cm^-1) relative to the exciting laser
wavelength (Raman/Stokes shift). Assumes wavelength in units of nm unless the axis units are specifically
set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1 by doing a Jacobian transformation,
see e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber domain. If the variance of the signal
is known, i.e. metadata.Signal.Noise_properties.variance is a signal representing the variance, a squared
renormalization of the variance is performed. Note that if the variance is a number (not a signal instance),
it is converted to a signal if the Jacobian transformation is performed

Parameters

• inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

• laser (float or None) – Laser wavelength in the same units as the signal axis. If None
(default), checks if it is stored in metadata.Acquisition_instrument.Laser.wavelength.

• jacobian (boolean) – The default is not to do the Jacobian transformation for Raman
shifts, but the transformation can be activated by setting this option to True.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm(laser=325)

1.9. lumispy 27

https://docs.python.org/3/library/functions.html#float

LumiSpy, Release 0.2.2

to_raman_shift(laser=None, inplace=True, jacobian=False)
Converts signal axis of 1D signal to non-linear wavenumber axis (cm^-1) relative to the exciting laser
wavelength (Raman/Stokes shift). Assumes wavelength in units of nm unless the axis units are specifically
set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1 by doing a Jacobian transformation,
see e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber domain. If the variance of the signal
is known, i.e. metadata.Signal.Noise_properties.variance is a signal representing the variance, a squared
renormalization of the variance is performed. Note that if the variance is a number (not a signal instance),
it is converted to a signal if the Jacobian transformation is performed

Parameters

• inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

• laser (float or None) – Laser wavelength in the same units as the signal axis. If None
(default), checks if it is stored in metadata.Acquisition_instrument.Laser.wavelength.

• jacobian (boolean) – The default is not to do the Jacobian transformation for Raman
shifts, but the transformation can be activated by setting this option to True.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm(laser=325)

lumispy.signals.luminescence_transient module

Signal class for luminescence transient data (1D)

class lumispy.signals.luminescence_transient.LazyLumiTransient(*args, **kwargs)
Bases: LazySignal, LumiTransient

General lazy 1D luminescence signal class (transient/time resolved)

class lumispy.signals.luminescence_transient.LumiTransient(*args, **kwargs)
Bases: Signal1D, CommonTransient

General 1D luminescence signal class (transient/time resolved)

lumispy.signals.luminescence_transientspec module

Signal class for luminescence transient data (2D)

class lumispy.signals.luminescence_transientspec.LazyLumiTransientSpectrum(*args, **kwargs)
Bases: LazySignal, LumiTransientSpectrum

General lazy 2D luminescence signal class (transient/time resolved)

28 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

LumiSpy, Release 0.2.2

class lumispy.signals.luminescence_transientspec.LumiTransientSpectrum(*args, **kwargs)
Bases: Signal2D, CommonLumi, CommonTransient

General 2D luminescence signal class (transient/time resolved)

lumispy.signals.pl_spectrum module

Signal class for Photoluminescence spectral data

class lumispy.signals.pl_spectrum.LazyPLSpectrum(*args, **kwargs)
Bases: LazySignal, PLSpectrum

General lazy 1D photoluminescence signal class

class lumispy.signals.pl_spectrum.PLSpectrum(*args, **kwargs)
Bases: LumiSpectrum

General 1D photoluminescence signal class

Module contents

lumispy.utils package

Submodules

lumispy.utils.axes module

lumispy.utils.axes._n_air(x)
Refractive index of air as a function of WL in nm. This analytical function is correct for the range 185-1700 nm.
According to E.R. Peck and K. Reeder. Dispersion of air, J. Opt. Soc. Am. 62, 958-962 (1972).

lumispy.utils.axes.axis2eV(ax0)
Converts given signal axis to energy scale (eV) using wavelength dependent refractive index of air. Assumes
wavelength in units of nm unless the axis units are specifically set to µm.

lumispy.utils.axes.axis2invcm(ax0)
Converts given signal axis to wavenumber scale (cm$^{-1}$). Assumes wavelength in units of nm unless the
axis units are specifically set to µm.

lumispy.utils.axes.data2eV(data, factor, evaxis, ax0)
The intensity is converted from counts/nm (counts/µm) to counts/meV by doing a Jacobian transformation, see
e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013). Ensures that integrated signals are still
correct.

lumispy.utils.axes.data2invcm(data, factor, invcmaxis, ax0=None)
The intensity is converted from counts/nm (counts/µm) to counts/cm$^{-1}$ by doing a Jacobian transformation,
see e.g. Mooney and Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013). Ensures that integrated signals are
still correct.

lumispy.utils.axes.eV2nm(x)
Converts energy (eV) to wavelength (nm) using wavelength-dependent refractive index of air.

1.9. lumispy 29

https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal2d.html#hyperspy._signals.signal2d.Signal2D
https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

LumiSpy, Release 0.2.2

lumispy.utils.axes.invcm2nm(x)
Converts wavenumber (cm$^{-1}$) to wavelength (nm).

lumispy.utils.axes.join_spectra(S, r=50, scale=True, average=False, kind='slinear')
Takes list of Signal1D objects and returns a single object with all spectra joined. Joins spectra at the center of
the overlapping range. Scales spectra by a factor determined as average over the range center -/+ r pixels. Works
both for uniform and non-uniform axes (FunctionalDataAxis is converted into a non-uniform DataAxis).

Parameters

• S (list of Signal1D objects (with overlapping signal axes)) –

• r (int, optional) – Number of pixels left/right of center (default 50) defining the range
over which to determine the scaling factor, has to be less than half of the overlapping pixels.
Change the size of r or use average=True if the function induces a step in the intensity.

• scale (boolean, optional) – If True (default), the later spectra in the list are scaled by a
factor determined over center -/+ r pixels. If False, spectra are joined without scaling, which
will likely induce a step unless average=True.

• average (boolean, optional) – If True, the contribution of the two signals is contin-
uously graded within the range defined by r instead of joining at the center of the range
(default).

• kind (str, optional) – Interpolation method (default ‘slinear’) to use when joining sig-
nals with a uniform signal axes. See scipy.interpolate.interp1d for options.

Returns

• A new Signal1D object containing the joined spectra (properties are copied

• from first spectrum).

Examples

>>> s1 = hs.signals.Signal1D(np.ones(32))
>>> s2 = hs.signals.Signal1D(np.ones(32)*2)
>>> s2.axes_manager.signal_axes[0].offset = 25
>>> lum.join_spectra([s1,s2],r=2)
<Signal1D, title: , dimensions: (|57)>

lumispy.utils.axes.nm2eV(x)
Converts wavelength (nm) to energy (eV) using wavelength-dependent refractive index of air.

lumispy.utils.axes.nm2invcm(x)
Converts wavelength (nm) to wavenumber (cm$^{-1}$).

lumispy.utils.axes.solve_grating_equation(axis, gamma_deg, deviation_angle_deg, focal_length_mm,
ccd_width_mm, grating_central_wavelength_nm,
grating_density_gr_mm)

Solves the grating equation. See horiba.com/uk/scientific/products/optics-tutorial/wavelength-pixel-position for
equations.

Parameters

• axis (hyperspy.axis) – Axis in pixel units (no units) to convert to wavelength.

• gamma_deg (float) – Inclination angle between the focal plane and the centre of the grating
(found experimentally from calibration). In degree.

30 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

LumiSpy, Release 0.2.2

• deviation_angle_deg (float) – Also known as included angle. It is defined as the dif-
ference between angle of diffraction (𝛽) and angle of incidence (𝛼). Given by manufacturer
specsheet. In degree.

• focal_length_mm (float) – Given by manufacturer specsheet. In mm.

• ccd_width_mm (float) – The width of the CDD. Given by manufacturer specsheet. In mm.

• grating_central_wavelength_nm (float) – Wavelength at the centre of the grating,
where exit slit is placed. In nm.

• grating_density_gr_mm (int) – Grating density in gratings per mm.

Returns
axis – HyperSpy axis object.

Return type
hyperspy.axis

lumispy.utils.axes.var2eV(variance, factor, evaxis, ax0)
The variance is converted doing a squared Jacobian renormalization to match with the transformation of the data.

lumispy.utils.axes.var2invcm(variance, factor, invcmaxis, ax0=None)
The variance is converted doing a squared Jacobian renormalization to match with the transformation of the data.

lumispy.utils.io module

lumispy.utils.io.savetxt(S, filename, fmt='%.5f', delimiter='\t', axes=True, transpose=False, **kwargs)
Writes signal object to simple text file.

Writes single spectra to a two-column data file with signal axis as X and data as Y. Writes linescan data to file
with signal axis as first row and navigation axis as first column (flipped if transpose=True). Writes image to file
with the navigation axes as first column and first row. Writes 2D data (e.g. map of a fit parameter value) to file
with the signal axes as first column and first row.

Parameters

• filename (string) –

• fmt (str or sequence of strs, optional) – A single or sequence of format strings.
Default is ‘%.5f’.

• delimiter (str, optional) – String or character separating columns. Default is ‘,’

• axes (bool, optional) – If True (default), include axes in saved file. If False, save the
data array only.

• transpose (bool, optional) – If True, transpose data array and exchange axes. Default
is false. Ignored for single spectra.

• **kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline header, footer,
comments, or encoding.

See also:

numpy.savetxt

1.9. lumispy 31

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt

LumiSpy, Release 0.2.2

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> lum.savetxt(S, 'spectrum.txt')
0.00000 0.00000
1.00000 1.00000
2.00000 2.00000
3.00000 3.00000
4.00000 4.00000
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> lum.savetxt(L, 'linescan.txt')
0.00000 0.00000 1.00000 2.00000 3.00000 4.00000
0.00000 0.00000 5.00000 10.00000 15.00000 20.00000
1.00000 1.00000 6.00000 11.00000 16.00000 21.00000
2.00000 2.00000 7.00000 12.00000 17.00000 22.00000
3.00000 3.00000 8.00000 13.00000 18.00000 23.00000
4.00000 4.00000 9.00000 14.00000 19.00000 24.00000

lumispy.utils.io.to_array(S, axes=True, transpose=False)
Returns signal object as numpy array (optionally including the axes).

Returns single spectra as two-column array. Returns linescan data as array with signal axis as first row and
navigation axis as first column (flipped if transpose=True). Returns image as array with the navigation axes as
first column and first row. Returns 2D data (e.g. map of a fit parameter value) as array with the signal axes as
first column and first row.

Parameters

• axes (bool, optional) – If True (default), include axes in array. If False, return the data
array only.

• transpose (bool, optional) – If True, transpose data array and exchange axes. Default
is false. Ignored for single spectra.

• **kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline header, footer,
comments, or encoding.

Notes

The output of this function can be used to convert a signal object to a pandas dataframe, e.g. using df =
pd.Dataframe(lum.to_array(S)).

32 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

LumiSpy, Release 0.2.2

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> lum.to_array(S)
array([[0., 0.],

[1., 1.],
[2., 2.],
[3., 3.],
[4., 4.]])

...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> lum.to_array(L)
array([[0., 0., 1., 2., 3., 4.],

[0., 0., 1., 2., 3., 4.],
[1., 5., 6., 7., 8., 9.],
[2., 10., 11., 12., 13., 14.],
[3., 15., 16., 17., 18., 19.],
[4., 20., 21., 22., 23., 24.]])

lumispy.utils.signals module

lumispy.utils.signals.com(spectrum_intensities, signal_axis, **kwargs)
Finds the centroid (center of mass) of a peak in the spectrum based from the intensity at each pixel value and its
respective signal axis.

Parameters

• spectrum_intensities (array) – An array with the intensities of the spectrum.

• signal_axis (hyperspy.axes.BaseDataAxis subclass) – A HyperSpy signal axis
class containing an array with the wavelength/ energy for each intensity/signal value.

• kwargs (dictionary) – For the scipy.interpolate.interp1d function.

Returns
center_of_mass – The centroid of the spectrum.

Return type
float

1.9. lumispy 33

https://docs.python.org/3/library/functions.html#float

LumiSpy, Release 0.2.2

Examples

Assume we have a spectrum with wavelengths and intensities >>> wavelengths = [200, 300, 400, 500,
600, 700] >>> intensities = [1, 2, 3, 2, 1, 0] >>> from hyperspy.axes import DataAxis >>> signal_axis =
DataAxis(axis=wavelengths)

>>> center_of_mass = com(intensities, signal_axis)
>>> print(center_of_mass) # Outputs: [400.0]

Module contents

Module contents

1.10 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.10.1 2023-03-15 - version 0.2.2

Changed

• Use GitHub code scanning (CodeQL) for integrity check as it replaces LGTM

• Added a centroid/center of mass functionality to analyse peak position of a spectrum (both in utils` and in Lu-
miSpectrum`)

• Add documentation of signal tools

Maintenance

• Replace sphinx.ext.imgmath by sphinx.ext.mathjax to fix the math rendering in the ReadTheDocs build

• fix external references in the documentation

1.10.2 2022-11-02 - version 0.2.1

Added

• Improved documentation

• Use lgtm.com to check code integrity

34 Chapter 1. Contents

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://github.blog/2022-08-15-the-next-step-for-lgtm-com-github-code-scanning/

LumiSpy, Release 0.2.2

Changed

• Fix conversion to Raman shift (relative wavenumber) and make jacobian=False default; fix
inplace=False for axis conversions

• Fix to_eV and to_invcm, as slicing with .isig[] was failing on converted signals

• s.remove_negative now defaults to inplace=False (previously True)

Maintenance

• Use softprops/action-gh-release action instead of deprecated create-release, pin action to a commit
SHA

1.10.3 2022-04-29 - version 0.2.0

Added

• Set up read the docs documentation

• Added metadata convention

• Add proper handling of variance on Jacobian transformation during axis conversion (eV, invcm)

Changed

• Account for the general availability of non-uniform axes with the HyperSpy v1.7 release

• Make LumiTransient 1D and add 2D LumiTransientSpectrum class

• Add python 3.10 build, remove python 3.6

• Fix error in background dimensions that allows compatibility for updated map in HyperSpy (failing integration
tests)

• Fix for links in PyPi

• Deprecate exposure argument of s.scale_by_exposure in favor of integration_time in line with meta-
data convention

• Add deprecation warning to remove_background_from_file

1.10.4 2021-11-23 - version 0.1.3

Changed

• Mentions of the now deleted non_uniform_axes branch in HyperSpy updated to RELEASE_next_minor

• Change ‘master’ to ‘main’ branch

• Updated/corrected badges and other things in README.md and other documentation files

1.10. Changelog 35

LumiSpy, Release 0.2.2

1.10.5 2021-08-22 - version 0.1.2

Added

• This project now keeps a Changelog

• Added signal-hierarchy for time-resolved luminescence

• Added GitHub action for release

• Created logo

Changed

• Consistent black-formatting

• fixed join_spectra

• fixed tests

1.10.6 2021-03-26 - version 0.1.0

Added

• The first release, basic functionality implemented

1.11 Citing LumiSpy

LumiSpy is maintained by an active community of developers.

If LumiSpy has been significant to a project that leads to an academic publication, please acknowledge that fact by
citing it. The DOI in the badge below is the Concept DOI – it can be used to cite the project without referring to a
specific version. If you are citing LumiSpy because you have used it to process data, please use the DOI of the specific
version that you have employed. You can find it by clicking on the DOI badge below:

1.12 Contributing

LumiSpy is meant to be a community maintained project. We welcome contributions in the form of bug reports,
documentation, code, feature requests, and more. In the following we refer to some resources to help you make useful
contributions.

36 Chapter 1. Contents

https://github.com/lumispy/lumispy/contributors
https://help.zenodo.org/#versioning
https://doi.org/10.5281/zenodo.4640445

LumiSpy, Release 0.2.2

1.12.1 Issues

The issue tracker can be used to report bugs or propose new features. When reporting a bug, the following is useful:

• give a minimal example demonstrating the bug,

• copy and paste the error traceback.

1.12.2 Pull Requests

If you want to contribute to the LumiSpy source code, you can send us a pull request. Small bug fixes are corrections to
the user guide are typically a good starting point. But don’t hesitate also for significant code contributions - if needed,
we’ll help you to get the code ready to common standards.

Please refer to the HyperSpy developer guide in order to get started and for detailed contributing guidelines.

The kikuchipy contributors guide, another HyperSpy extension, also is a valuable resource that can get you started and
provides useful guidelines.

Reviewing

As quality assurance, to improve the code, and to ensure a generalized functionality, pull requests need to be thoroughly
reviewed by at least one other member of the development team before being merged.

1.12.3 Documentation

The LumiSpy documentation consists of three elements:

• Docstrings following the numpy standard that document the functionality of individual methods on GitHub.

• The documentation written using Sphinx and hosted on Read the Docs. The source is part of the GitHub repos-
itory.

• A set of curated Jupyter notebooks in the LumiSpy demos repository on GitHub that provide tutorials and example
workflows.

Improving documentation is always welcome and a good way of starting out to learn the GitHub functionality. You can
contribute through pull requests to the respective repositories.

1.12.4 Code style

LumiSpy follows Style Guide for Python Code with The Black Code style.

For docstrings, we follow the numpydoc standard.

Package imports should be structured into three blocks with blank lines between them:

• standard libraries (like os and typing),

• third party packages (like numpy and hyperspy),

• and finally lumispy imports.

1.12. Contributing 37

https://github.com/lumispy/lumispy/issues
https://github.com/lumispy/lumispy/pulls
http://hyperspy.org/hyperspy-doc/current/dev_guide/intro.html
https://kikuchipy.org/en/latest/dev/index.html
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://github.com/LumiSpy/lumispy/tree/main/lumispy/
https://docs.lumispy.org
https://www.sphinx-doc.org/en/master/
https://docs.lumispy.org
https://github.com/LumiSpy/lumispy/tree/main/doc/source
https://github.com/LumiSpy/lumispy/tree/main/doc/source
https://github.com/lumispy/lumispy-demos
https://www.python.org/dev/peps/pep-0008/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html
https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

LumiSpy, Release 0.2.2

1.12.5 Writing tests

All functionality in LumiSpy is tested via the pytest framework. The tests reside in the test directory. Tests are short
methods that call functions in LumiSpy and compare resulting output values with known answers. Please refer to the
HyperSpy development guide for further information on tests.

1.12.6 Releasing a new version

LumiSpy versioning follows semantic versioning and the version number is therefore a three-part number: MA-
JOR.MINOR.PATCH. Each number will change depending on the type of changes according to the following:

• MAJOR increases when making incompatible API changes,

• MINOR increases when adding functionality in a backwards compatible manner, and

• PATCH increases when making backwards compatible bug fixes.

The process to release a new version that is pushed to PyPI and Conda-Forge is documented in the Releasing guide.

1.13 License

LumiSpy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
(GPL) as published by the Free Software Foundation, either version 3 of the license, or (at your option) any later version.

LumiSpy is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

38 Chapter 1. Contents

https://docs.pytest.org
https://hyperspy.org/hyperspy-doc/current/dev_guide/testing.html
https://semver.org/spec/v2.0.0.html
https://pypi.org
https://conda-forge.org/
https://github.com/LumiSpy/lumispy/blob/main/releasing_guide.md
https://www.gnu.org/licenses/#GPL
https://www.gnu.org/licenses/#GPL
https://www.gnu.org/licenses/#GPL

BIBLIOGRAPHY

[Mooney] J. Mooney and P. Kambhampati, The Journal of Physical Chemistry Letters 4, 3316 (2013).
doi:10.1021/jz401508t

[Peck] E.R. Peck and K. Reeder, J. Opt. Soc. Am. 62, 958 (1972). doi:10.1364/JOSA.62.000958

[Pfueller] C. Pfüller, Dissertation, HU Berlin, p. 28 (2011). doi:10.18452/16360

[Tappy] N. Tappy, A. Fontcuberta i Morral and C. Monachon, Rev. Sci. Instrum. 93, 053702 (2022).
doi:10.1063/5.0080486

[Wang] Y. Wang and P. D. Townsend, J. Luminesc. 142, 202 (2013). doi:10.1016/j.jlumin.2013.03.052

39

https://doi.org/10.1021/jz401508t
https://doi.org/10.1364/JOSA.62.000958
https://doi.org/10.18452/16360
https://doi.org/10.1063/5.0080486
https://doi.org/10.1016/j.jlumin.2013.03.052

LumiSpy, Release 0.2.2

40 Bibliography

PYTHON MODULE INDEX

l
lumispy, 34
lumispy.signals, 29
lumispy.signals.cl_spectrum, 18
lumispy.signals.common_luminescence, 20
lumispy.signals.common_transient, 22
lumispy.signals.el_spectrum, 22
lumispy.signals.luminescence_spectrum, 22
lumispy.signals.luminescence_transient, 28
lumispy.signals.luminescence_transientspec,

28
lumispy.signals.pl_spectrum, 29
lumispy.utils, 34
lumispy.utils.axes, 29
lumispy.utils.io, 31
lumispy.utils.signals, 33

41

LumiSpy, Release 0.2.2

42 Python Module Index

INDEX

Symbols
_convert_data() (lu-

mispy.signals.luminescence_spectrum.LumiSpectrum
method), 22

_make_signal_mask() (lu-
mispy.signals.cl_spectrum.CLSpectrum
method), 19

_n_air() (in module lumispy.utils.axes), 29
_reset_variance_linear_model() (lu-

mispy.signals.luminescence_spectrum.LumiSpectrum
method), 22

A
axis2eV() (in module lumispy.utils.axes), 29
axis2invcm() (in module lumispy.utils.axes), 29

C
centroid() (lumispy.signals.luminescence_spectrum.LumiSpectrum

method), 22
CLSEMSpectrum (class in lumispy.signals.cl_spectrum),

18
CLSpectrum (class in lumispy.signals.cl_spectrum), 19
CLSTEMSpectrum (class in lumispy.signals.cl_spectrum),

19
com() (in module lumispy.utils.signals), 33
CommonLumi (class in lu-

mispy.signals.common_luminescence), 20
CommonTransient (class in lu-

mispy.signals.common_transient), 22
correct_grating_shift() (lu-

mispy.signals.cl_spectrum.CLSEMSpectrum
method), 18

crop_edges() (lumispy.signals.common_luminescence.CommonLumi
method), 20

D
data2eV() (in module lumispy.utils.axes), 29
data2invcm() (in module lumispy.utils.axes), 29

E
ELSpectrum (class in lumispy.signals.el_spectrum), 22

eV2nm() (in module lumispy.utils.axes), 29

I
invcm2nm() (in module lumispy.utils.axes), 29

J
join_spectra() (in module lumispy.utils.axes), 30

L
LazyCLSEMSpectrum (class in lu-

mispy.signals.cl_spectrum), 20
LazyCLSpectrum (class in lumispy.signals.cl_spectrum),

20
LazyCLSTEMSpectrum (class in lu-

mispy.signals.cl_spectrum), 20
LazyELSpectrum (class in lumispy.signals.el_spectrum),

22
LazyLumiSpectrum (class in lu-

mispy.signals.luminescence_spectrum), 22
LazyLumiTransient (class in lu-

mispy.signals.luminescence_transient), 28
LazyLumiTransientSpectrum (class in lu-

mispy.signals.luminescence_transientspec),
28

LazyPLSpectrum (class in lumispy.signals.pl_spectrum),
29

LumiSpectrum (class in lu-
mispy.signals.luminescence_spectrum), 22

lumispy
module, 34

lumispy.signals
module, 29

lumispy.signals.cl_spectrum
module, 18

lumispy.signals.common_luminescence
module, 20

lumispy.signals.common_transient
module, 22

lumispy.signals.el_spectrum
module, 22

lumispy.signals.luminescence_spectrum
module, 22

43

LumiSpy, Release 0.2.2

lumispy.signals.luminescence_transient
module, 28

lumispy.signals.luminescence_transientspec
module, 28

lumispy.signals.pl_spectrum
module, 29

lumispy.utils
module, 34

lumispy.utils.axes
module, 29

lumispy.utils.io
module, 31

lumispy.utils.signals
module, 33

LumiTransient (class in lu-
mispy.signals.luminescence_transient), 28

LumiTransientSpectrum (class in lu-
mispy.signals.luminescence_transientspec),
28

M
module
lumispy, 34
lumispy.signals, 29
lumispy.signals.cl_spectrum, 18
lumispy.signals.common_luminescence, 20
lumispy.signals.common_transient, 22
lumispy.signals.el_spectrum, 22
lumispy.signals.luminescence_spectrum, 22
lumispy.signals.luminescence_transient,

28
lumispy.signals.luminescence_transientspec,

28
lumispy.signals.pl_spectrum, 29
lumispy.utils, 34
lumispy.utils.axes, 29
lumispy.utils.io, 31
lumispy.utils.signals, 33

N
nm2eV() (in module lumispy.utils.axes), 30
nm2invcm() (in module lumispy.utils.axes), 30
normalize() (lumispy.signals.common_luminescence.CommonLumi

method), 20

P
PLSpectrum (class in lumispy.signals.pl_spectrum), 29
px_to_nm_grating_solver() (lu-

mispy.signals.luminescence_spectrum.LumiSpectrum
method), 23

R
remove_background_from_file() (lu-

mispy.signals.luminescence_spectrum.LumiSpectrum

method), 24
remove_negative() (lu-

mispy.signals.common_luminescence.CommonLumi
method), 21

remove_spikes() (lu-
mispy.signals.cl_spectrum.CLSpectrum
method), 19

S
savetxt() (in module lumispy.utils.io), 31
savetxt() (lumispy.signals.luminescence_spectrum.LumiSpectrum

method), 24
scale_by_exposure() (lu-

mispy.signals.common_luminescence.CommonLumi
method), 21

solve_grating_equation() (in module lu-
mispy.utils.axes), 30

T
to_array() (in module lumispy.utils.io), 32
to_array() (lumispy.signals.luminescence_spectrum.LumiSpectrum

method), 25
to_eV() (lumispy.signals.luminescence_spectrum.LumiSpectrum

method), 26
to_invcm() (lumispy.signals.luminescence_spectrum.LumiSpectrum

method), 26
to_invcm_relative() (lu-

mispy.signals.luminescence_spectrum.LumiSpectrum
method), 27

to_raman_shift() (lu-
mispy.signals.luminescence_spectrum.LumiSpectrum
method), 27

V
var2eV() (in module lumispy.utils.axes), 31
var2invcm() (in module lumispy.utils.axes), 31

44 Index

	Contents
	Installation
	Installation using conda
	1. Creating a conda environment
	2. Installing the package in the new environment
	3. Getting Started

	Installation using pip
	Updating the package

	Introduction
	What is LumiSpy
	Signal types
	Where are we heading?

	Non-uniform signal axes
	The energy axis
	The wavenumber axis/Raman shifts
	Jacobian transformation
	Transformation of the variance

	Signal tools
	Scaling and normalizing signal data
	Peak positions and properties
	Peak identification
	Peak Width
	Calculating the centroid of a spectrum (centre of mass)

	Signal statistics and analytical operations
	Replacing negative data values

	Fitting luminescence data
	Signal variance (noise)

	Utility functions
	Join spectra
	Utilities for spectral maps
	Unit conversion
	Solving the grating equation

	LumiSpy metadata structure
	General
	Sample
	Signal
	Acquisition Instrument
	Laser / SEM / TEM
	Laser
	Filter

	Spectrometer
	Grating
	Filter

	Detector
	Spectral_image

	Bibliography
	lumispy
	lumispy package
	Subpackages
	lumispy.signals package
	Submodules
	lumispy.signals.cl_spectrum module
	Signal class for cathodoluminescence spectral data
	lumispy.signals.common_luminescence module
	Signal class for luminescence data (BaseSignal class)
	lumispy.signals.common_transient module
	Signal class for transient data (BaseSignal class)
	lumispy.signals.el_spectrum module
	Signal class for electroluminescence spectral data
	lumispy.signals.luminescence_spectrum module
	lumispy.signals.luminescence_transient module
	Signal class for luminescence transient data (1D)
	lumispy.signals.luminescence_transientspec module
	Signal class for luminescence transient data (2D)
	lumispy.signals.pl_spectrum module
	Signal class for Photoluminescence spectral data
	Module contents

	lumispy.utils package
	Submodules
	lumispy.utils.axes module
	lumispy.utils.io module
	lumispy.utils.signals module
	Module contents

	Module contents

	Changelog
	2023-03-15 - version 0.2.2
	Changed
	Maintenance

	2022-11-02 - version 0.2.1
	Added
	Changed
	Maintenance

	2022-04-29 - version 0.2.0
	Added
	Changed

	2021-11-23 - version 0.1.3
	Changed

	2021-08-22 - version 0.1.2
	Added
	Changed

	2021-03-26 - version 0.1.0
	Added

	Citing LumiSpy
	Contributing
	Issues
	Pull Requests
	Reviewing

	Documentation
	Code style
	Writing tests
	Releasing a new version

	License

	Bibliography
	Python Module Index
	Index

